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ABSTRACT

Traditional experiments and computation modelling often consume tremendous time and resources. A typical time frame for materials SV N . Since multiple models are using the predicted parameters, it is
development from initial research state to commercial use can take 10-20 years. It is crucial to develop methods for accelerating the &f
discovery and design process of novel materials. This poster addresses automating some expensive traditional approach. Machine

important to observe how LR model performs during inference of
noisy input. This assessment is conducted using four different

MAPE

learning has received significant attention in materials discovery, development, optimization and design. Execution o : : _
B B 3 B B o configurations as follows:
Discovery > Deployment* N ¢ Trained with ground truth input with noise applied to peak stress
r & 2 & 3 & 4 & 5 & 6 & 7 OPTIMIZATION CYCLE T e and strain during inference (2D)
D | t P Svst Certificati M facturi . . Trained: Error - Predict: Error RR . . . . . . .
evelopmen Om{;‘i’f;{on Dedignand o HONECH Focuses on accelerating materials % » Trained with noisy input along with noise applied to peak stress
Integration * Includes Sustainment and Recovery development, optimization and “ and strain during inference (2D)
o Features from SEM images and human assessed data are used to predict the peak stress, the peak strain and the initial slope. pIeidgAdennie=isies  deployment, while providing o 20 ¢ Trained with ground truth input with noise applied to peak stress
o Experiments suggests, domain knowledge based features captured from the SEM images aids prediction accuracy. performance and compatibility * 15 during inference (1D)
o Binarized Statistical Image Feature (BSIF) is a hand engineered feature that is motivated through domain knowledge. predictions during the lifetime of the 5 n  +% Trained with noisy input along with noise applied to peak stress
o Fusion models can lead to improve accuracy with decrease in error of predicted performance parameters in the intermediate stage. materials o A N R - s during inference (1D)
0 20 40 60 80 100 40 &
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APPROACH Predicted stress and strain from ML models explored so far falls within ~16% to ~24% in terms of percentage error. The pseudo
System error plots indicate that reducing predicted error by any amount to 20% or less would reduce inference error linearly.

BSIF motivated through domain knowledge, applied in the experiments in order to analyze the domain knowledge chosen Requirements
method over Deep Learning on images, which automates feature extraction. Hand engineered features that target specific
attributes (texture) help to gain a level of interpretability that can be lost in deep learning feature extraction. Followings are
key steps considered:

Is BSIF missing any crucial content?

Gaussian Mixture Model (GMM) with varying class size is explored to spot any pattern in classifying lots. The filled contour shows 10
class 30 lots presentation of BSIF data. Each lot is addressed from the range of 0 to 29. Red rectangles points at lot R and other

members who share same class. Similarly, green rectangles points at lot W and other members whcl) shares same class.
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s Correlation among performance parameters evaluated.

** Linear Regression and Random Forest prediction performance compared A — hous oSO 5 % e
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** Pseudo error assessment to seek motivation in reducing error from scalar data-based ML models I:i
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Model Choice

Performance parameter prediction from scalar data c L ¥ ki T\ e Machine Learning & Data analysi : : : i :
P P sy 22.16 . < Both R and W share their respective cluster with lots containing g 04
e Linear Regression (LR) showed greater accuracy than Random Forest (RF) ! 0] 117.33 256pm x 256um significantly different performance key parameter from ground truth
e Result further supports correlation table 5] : . : : : : :
PP = _ Bl S oo Stages involved in extracting performance parameters perspective but close in predicted readings.
Performance parameter prediction from image feature D | = m Linear Resroii it ¢ Percentage error is significantly high relative to other lots. ' ' 4
. . . 5 1 .. . . . . Cluster
o Linear Regression generated lower percentage error relative to Random R " ¢ This indicates, BSIF vector either lacking some other key details from the
. . . .. uman . W
Forest in case of strain and slope prediction. Image Feature  Experimental Assessed Data 2D images
t . . . .
bl %+ Or, BSIF is generalizing image content to an extend that there are no 08 1
distinct elements to aid learning when it comes to some poorly predicted | ;.
.. .. ) ) . lots. €
Binarized Statistical Image Feature (BSIF) is fed to multiple standard and fusion models. Human assessed parameters are . . , , , , £ 04-
) ) ) Final predicted ** Or, 2D image might have missed some key feature that lies beneath the =
also applied to observe any growth in learning. e Predicted Parameters el
o parameter(s) surface of the feedstock.
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e — - LS e 6.08 5.89 6.15 . BSIF To address source of error better, it would be interesting to
55 l l | . | | | | | | mage Feature | explore Deep Learning (DL) approach on entire image to
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Human Image Performance Image feature + Human Image feature + Human Image Feature + Human Assessed Data + \_/_ see If we need INOLE than the inage Of surface content Of
Assessed Feature Parameters Assessed Data Assessed Data+  ©strength Parameters  strength parameters the feedstock.
Data (BSIF) ® strength parameters
Fusion Model Architecture
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